

Semantic Modeling at Sempra Utilities: Using a Common Information Model for Back Office Integration CIMug November 2011

Lynn Rodoni, Information Architect

© 2005 San Diego Gas and Electric Company and Southern California Gas Company. All copyright and trademark rights reserved

Sempra Energy Utilities

Southern California Gas Company - 6,600 Employees

- 5.6 million natural gas meters
- 23,000 square miles, from San Luis Obispo to the Mexican border and 535 cities.
- USA's largest natural gas distribution utility
- Serving over 20 million consumers in 20,000 square mile service territory

San Diego Gas & Electric - 4,500 Employees

- 1.4 million electric meters & 800,000 natural gas meters
- 4,100 square miles, covering two counties and 25 cities.
- Serving 3.4 million consumers in San Diego region

Combined Utilities

Regulated by the California Public Utilities Commission

Key Sempra Business Efforts

SDG&E Smart Metering program
Mass deployment nearing completion

SCG AMI program (in development will touch 5 Pipeline Integrity (SmartGrid for Gas)

Sunrise Power link 500 kV

SmartGrid Initiatives

> Gridcomm, HAN, Green Button, Electric Vehicle Initiati

OpEx 20/20 (nearing completion)

- Field Force M&I and Construction work
- > OMS/DMS/GIS, CBM, Asset Management

Sempra Energy[®]utilities

Enterprise Information Management Key Business Driver

Increasing requirements to share information efficiently

- Creating a shared structure and terminology involves an upfront investment.
- Simplify **integration**, increase **interoperability** and **consistently** expose the information the business manages.

Past

No one can figure out Who is talking to whom?

Great! You are using SOA but, Can we reuse this investment?

Future

We know what investments we have made in automating the business and we know what we can reuse to build future applications cheaper.

4

Information Model Development Steps and Phase Deliverables

Case Study

OpEx 20/20 Initiative: Outage Management Project (OMS)

© 2005 San Diego Gas and Electric Company and Southern California Gas Company. All copyright and trademark rights reserved

Information Management Objectives

Develop model-based XML schemas for Outage Management Back-office system integrations using the Sempra Semantic Model (SIM) as the basis

Extend the SIM Semantic Model to support Outage Management Integration requirements

Demonstrate reuse and faster integration of LATER use cases

Refine the existing Information Management Integration methodology

- Traceability
- End-to-end data flow
- "As-designed" to "As-built" model requirements

Outage Management Back Office Integration Environment

Multiple Work Management Systems

Managing Work , assigning and tracking Crews, Work completion reporting

Trouble Shooting Crews Field Repair Crews

Vegetation Management Crews

Customer Information System

Trouble Ticket Management

Customer Account Structure (Service Delivery Point/Customer Account Master Data)

Outage Management System

Identifying outages, determining repairs, and assigning work

Reporting Results of Outages to interested parties

Consumer Analication Consumer Consum

Outage Management Back Office Integration Environment Characteristics

Event-based interactions (SOA Services)

Batch file Master Data distribution for Customer Account/Service

Delivery Point

Business Processes based on "common" information concepts

- Customer
- CustomerAccount
- <u>TroubleTicket (extension to SIM)</u>
- Outage
- ✓ Work/WorkTask
- ServiceLocation
- ✓ ServiceDeliveryPoint
- Crew (extension to SIM)
- Vehicle (extension to SIM)
- ✓ Etc.

Results: OMS Project Services Using SIM Based Schemas

Work Management

- Outage Work Execution Service
- Outage Work Status Service

Crew Management

- Crew Management Service
- Crew Availability Service
- **Over Service** Vehicle Location Service

Trouble Ticket Management

- Trouble Ticket Notification Servid
- Trouble Ticket Completion
- Outage Information Report Service

Results: OMS Project Services Using SIM Based Schemas

Master data service Service Delivery Point Master Data

Methodology: Example of a Schema Model Vehicle Location Schema

Kempra Energy®utilities

Methodology: Traceability

Vehicle Location Schema mapping to OMS Interface

Methodology: Consolidated Mapping Spreadsheet Use of Vehicle Location Service Schema

SIM VehicleLocationV1.1 Schema				SORT			CLICK			NMS OD		
				5020						5020		
				Send			Send			Receive		
SIM Schema Path	SIM Schema	SIM Entity Name	SIM Property Name	Entity Name	Field Name	Mapping Notes	Entity Name3	Field Name3	Mapping Notes3	Entity Name2	Field Name2	Mapping Notes2
· · · · · · · · · · · · · · · · · · ·	Notes 🛛 💽	· 💌	•	_	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	×	×	•	•
VehicleAsset/vehicleAssetName		VehicleAsset	vehicleAssetName	SendGPSLoca tion	MobileUserVehicleID		Engineer	CMTRUCKNu mber		Vehicle	AVLID	
VehicleAsset/vehicleAssetLocatedA /LocationGeneral/locationDateTime		LocationGeneral	locationDateTime	SendGPSLoca tion	PositionUpdated		Stamp	TimeModified		AVLEvent	GMTTime	
/LocationGeneral/locationLatitudeNu nber		LocationGeneral	locationLatitudeNumber	SendGPSLoca tion	PositionLatitude		Engineer	Latitude		GPS	latitude	
/LocationGeneral/locationLongitude Vumber		LocationGeneral	locationLongitudeNumber	SendGPSLoca tion	PositionLongitude		Engineer	Longitude		GPS	longitude	
VehicleAsset/vehicleAssetLocatedA /LocationGeneral/gmlCoordSystem vIRID		LocationGeneral	gmlCoordSystemMRID		hardcoded	value TBD		hardcoded	value TBD		<not persisted></not 	requires transformation to local
/LocationGeneral/hasVelocities/Velo sity/velocitySpeedValue		Velocity	velocitySpeedValue		<not provided=""></not>			<not provided=""></not>		Telemetry	speed	incoming unit of measure
/LocationGeneral/hasVelocities/Velo xity/velocityHeadingUnitOfMeasureTe		Velocity	velocityHeadingUnitOfMea sureText		<not provided=""></not>			<not provided=""></not>		Telemetry	heading	velocityHeadin gUnitofMeasur
/LocationGeneral/hasVelocities/Velo xity/velocityDateTime		Velocity	velocityDateTime		<not provided=""></not>			<not provided=""></not>			<not required=""></not>	
/LocationGeneral/hasVelocities/Velo xity/velocitySpeedUnitOfMeasureText		Velocity	velocitySpeedUnitOfMeas ureText		<not provided=""></not>			<not provided=""></not>		Telemetry	speed	incoming unit of measure
VehicleAsset/vehicleAssetLocatedA /LocationGeneral/hasVelocities/Velo xity/velocityHeadingValue		Velocity	velocityHeadingValue		<not provided=""></not>			<not provided=""></not>		Telemetry	heading	" velocityHeadin gUnitofMeasur eText isNot

Sempra Energy[®]utilities

Lessons Learned The devil is in the details

Methodology Outreach

Coordination with Business Process and Service Design teams is critical
 Engage as early in Requirements phase as possible to understand and possibly influence the "lay of the land"

Scaling, Resources and Consistency

Different phases require different skills/focus
 Volume of details grows dramatically across the phases
 Requires oversight across projects to ensure consistency

Lessons Learned The devil is in the details

Traceability is NOT easy

Across representations of the SAME model (logical and physical)
 Across different models (UML not the best modeling tool)
 Hard to keep everything updated when using different tools

Support requires a Separation Of Concerns between Logical and

Physical Design

Semantics vs syntax
 COBOL/RDZ constraints (and other technology issues)
 Focus on implementation and developer concerns

Round 3: What's Next?

- Evolve information modeling methodology based on lessons learned
- Work with new projects (Dynamic Peak Pricing and Customer Contact Management) using evolved methodology
- Extend resource capacity by training Service Design team (Physical Modeling)
- Acquire Metadata tool to support more effective mapping and traceability
- Assess emerging information 'standards' affecting Smart Grid objectives and extend SIM as required

Enterprise Information Management evolves incrementally and ¹⁷ iteratively. It's a guided journey, rather than a destination.